You are currently viewing How to Troubleshoot Air Conditioning Systems

How to Troubleshoot Air Conditioning Systems

If you work as an HVACR Tech, chances are you’ve gotten that dreaded phone call: one of your customers is experiencing difficulties with their air conditioning unit. What could the issue be? When it comes to air conditioning units, it could be a number of things. In Part 1 of “How to Troubleshoot Air Conditioning Systems”, you’ll learn that air temperatures, inefficient compressors, and noncondensables in the refrigerant system could be to blame. 

Troubleshooting an air conditioning system often concerns refrigerant, airflow, and mechanical problems, either individually or in combination. The next series of articles will deal with many of these problems, but this one will cover air temperatures entering the condenser, inefficient compressors, and noncondensables in the refrigerant system.

AIR TEMPERATURE AND CONDENSERS

Low entering air temperature in the condenser will cause a low head pressure from the excessive heat transfer between this cool ambient air and the refrigerant in the condenser coil. Low head pressures can reduce refrigerant mass flow rates through metering devices, which have capacity ratings dependent on the pressure differences across them. The lower this pressure difference is, the less flow through the metering device. This reduced refrigerant flow rate can cause a starved evaporator, which will, in turn, cause low suction pressures and high superheats. However, these system inefficiencies may be offset by increased subcooling at these lower ambient air temperatures entering the condenser coil.

This entire drop in system capacity may decrease the air conditioner’s heat removal abilities if it is not designed for it. If not designed properly, liquid will start to back up in the condenser, causing liquid subcooling in the condenser to be increased. Also, less refrigerant circulated means less work for the compressor, so the ampere draw of the compressor will be lowered. If the system is set up for this reduced condenser air entering temperature, the head pressure can be designed to float, or change with the changing ambient temperature. This will give lower head pressures with increased efficiencies.

A properly matched thermostatic expansion valve (TXV) to handle these reduced pressure drops across its orifice may have to be incorporated into the design to keep refrigerant flow rates acceptable. A TXV with a balanced-port design is often used in these scenarios.

The symptoms of low condenser entering air temperature include:

  • Low suction pressure (if not designed for low head pressure at TXV);
  • Low head (condensing) pressure;
  • High superheat (if not designed for low head pressure at TXV);
  • Low amp draw; and
  • Higher condenser subcooling.

High entering air temperature in the condenser will have much different effects on an air conditioning system. Higher outdoor ambient air will cause head pressures to elevate in order to complete the heat rejection task. The temperature difference (TD) between the condensing temperature and the ambient air will go down, and the refrigerant gas will not condense until the head pressure rises. The condenser cannot reject as much heat at this lower TD and will therefore accumulate the heat. The accumulated heat forces the condensing temperature to elevate to a TD where the heat can be rejected at the proper rate. Remember, the temperature difference is the driving potential for heat transfer. However, at higher entering air temperatures, this heat rejection happens at a higher condensing temperature, forcing the system to have higher compression ratios and lower efficiencies.

High head pressures cause the compression ratio to increase, resulting in low volumetric efficiencies. As volumetric efficiencies decrease, mass flow rates decrease and the compressor is less efficient. High head pressures also elevate liquid temperatures entering the metering device, which will increase evaporator flash gas and thus decrease the net refrigeration effect (NRE). Because of these inefficiencies, the suction pressure may be a bit higher, and the system will have a hard time maintaining designed temperature and humidity of the conditioned space. Evaporator superheats will vary depending on the type of metering device.

TXV systems will try to maintain evaporator superheat, even though the pressure drop across the valve may be out of its control range at the higher ambient temperatures. Here, the condenser subcooling may be normal; however, flow rates through a capillary tube metering device — or any fixed orifice metering device — depend on the pressure difference across the metering device. Higher head pressures will increase the flow rate through this metering device, pushing the subcooled liquid at the condenser’s bottom through the metering device at a faster rate. Because of this, condenser subcooling will decrease, as will evaporator superheat, because the flooded evaporator coil will have a lot of flash gas at its entrance.

INEFFICIENT COMPRESSORS

Because they are responsible for circulating refrigerant through the system, inefficient compressors can decrease the heat transfer ability of an air conditioning system. In reciprocating compressors, leaky valves or worn piston rings are two of the major problems that can lead to inefficiencies.

One of the symptoms of an inefficient compressor is high suction pressures along with low discharge (head) pressures. If the compressor is inefficient, the evaporator cannot handle the high heat load due to a decreased refrigerant flow rate, and the conditioned space temperature will start to rise. This rise in return air temperature will overload the evaporator with heat, causing high suction pressures and higher-than-normal superheats.

Piston ring blow-by and reed valve leakage can also cause high suction pressures from recirculation of refrigerant. This is also a cause of low refrigerant flow rate. The condenser will see a reduced heat load to reject from the decreased mass flow rate of refrigerant being circulated through it, which will cause a low condensing temperature and pressure. The compressor ampere draw will be lowered from less work having to be expended with the low mass flow rate of refrigerant from recirculated refrigerant. Subcooling in the condenser should also be a bit low from the reduced heat load on the condenser.

Symptoms for an inefficient reciprocating compressor with bad valves or leaky rings include:

  • High suction pressures;
  • Low head pressures;
  • Low compressor amp draw;
  • High return air temperature
  • High superheat (capillary tube and orifice); and
  • Condenser subcooling (low to normal).

–Click Here to Continue Reading–

Complete and Original Article Published on Achrnews.com.